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ABSTRACT 

Continuous queries are used to monitor changes to time 

varying data and to provide results useful for online 

decision making. Typically a user desires to obtain the 

value of some aggregation function over distributed data 

items, for example, to know (a) the average of temperatures 

sensed by a set of sensors (b) the value of index of mid-cap 

stocks. In these queries a client specifies a coherency 

requirement as part of the query. In this paper we present a 

low-cost, scalable technique to answer continuous 

aggregation queries using a content distribution network of 

dynamic data items. In such a network of data aggregators, 

each data aggregator serves a set of data items at specific 

coherencies. Our technique involves decomposing a client 

query into sub-queries and executing sub-queries on 

judiciously chosen data aggregators with their individual 

sub-query incoherency bounds. We provide a technique of 

getting the optimal query plan (i.e., set of sub-queries and 

their chosen data aggregators) which satisfies client query’s 

coherency requirement with least cost, measured in terms 

of the number of refresh messages sent from aggregators to 

the client. For estimating query execution cost, we build a 

continuous query cost model which can be used to estimate 

the number of messages required to satisfy the client 

specified incoherency bound. 

Index terms – Continuous queries, distributed query 

processing, data dissemination, coherency. 

 

1. INTRODUCTION 

 

 

 

Many data intensive applications delivered over the 

Web suffer from performance and scalability issues. 

Content distribution networks (CDNs) solved the 

problem for static content using caches at the edge 

nodes of the networks. CDNs continue to evolve to 

serve more and more dynamic applications [1, 2]. A 

dynamically generated web page is usually assembled 

using a number of static or dynamically generated 

fragments. The static fragments are served from the 

local caches whereas dynamic fragments are created 

either by using the cached data or by fetching the data 

items from the origin data sources. One important 

question for satisfying client requests through a 

network of nodes is how to select the best node(s) to 

satisfy the request. For static pages content requested, 

proximity to the client and load on the nodes are the 

parameters generally used to select the appropriate 

node [3]. In dynamic CDNs, while selecting the 

node(s) to satisfy the client request, the central site 

(top-level CDN node) has to ensure that page/data 

served meets client’s coherency requirements also. 

Techniques to efficiently serve fast changing data 

items with guaranteed incoherency bounds have been 

proposed in the literature [4,5]. Such dynamic data 

dissemination networks can be used to disseminate 

data such as stock quotes, temperature data from 



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013 

ISSN: 2320 - 8791 

www.ijreat.org 

 

www.ijreat.org 
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) 

2 

 

sensors, traffic information, and network monitoring 

data. In this paper we propose a method to efficiently 

answer aggregation queries involving such data 

items. 

Data Incoherency: Data accuracy can be 

specified in terms of incoherency of a data item, 

defined as the absolute difference in value of the data 

item at the data source and the value known to a 

client of the data. Let vi(t) denote the value of the i
th

 

data item at the data source at time t; and let the value 

the data item known to the client be ui(t). Then the 

data incoherency at the client is given by |vi(t)-ui(t)|. 

For a data item which needs to be refreshed at an 

incoherency bound C a data refresh message is sent 

to the client as soon as data incoherency exceeds C, 

i.e., |vi(t)-ui(t)| C.  

Network of data aggregators: Data refresh 

from data sources to clients can be done using push 

or pull based mechanism data sources and messages 

to the client only when the client makes a request. 

We assume the push based mechanism for data 

transfer between data sources and clients. For 

Scalable handling of push based data dissemination, 

network of data aggregators are proposed in the 

literature. In such network of data aggregators, data 

refreshes occur from data sources to the clients 

through one or more data aggregators. 

In this paper we assume that each data 

aggregator maintains its configured incoherency 

bounds for various data items. From a data 

dissemination capability point of view, each data 

aggregator (DA) is characterized by a set of (di,ci) 

pairs, where di is a data item which DA can 

disseminate at a incoherency bound of a data item at 

a data aggregator can be maintained using any of 

following methods: (a) The data source refreshes the 

data value of the DA whenever DA’s incoherency 

bound is about to get violated. This method has 

scalability problems. (b) Data aggregator(s) with 

tighter incoherency bound in a scalable manner. 

Example 1: In a network of data aggregators 

managing data items s1-s4, various aggregators can be 

characterized as- 

 a1: {(s1,0.5), (s3,0.2)} 

 a2:{(s1,1.0), (s2,0.1), (s4, 0.2)} 

Aggregator a1 can serve values of s1 with an 

incoherency bound greater than or equal to 0.5 

whereas a2 can disseminate the same data item at a 

looser incoherency bound of 1.0 or more. In such a 

network of aggregators of multiple data items all the 

nodes can be considered as peers since a node ai can 

help another node ak to maintain incoherency bound 

of the data item s1 (incoherency bound of d1 at ai is 

tighter than that at ak) but the node ai gets values of 

another data item s2 from ak. 

1.1 Summary of Approach and Contributions 

Consider a client query Q1=50 S1 + 200 S2 

+ 150 S3 with a required incoherency bound of 80 (in 

a stock portfolio S1, S2, S3 can be different stocks 

and incoherency bound can be $80).We want to 

execute this query over data aggregators given in 

Example1 minimizing number of refreshes. There are 

various options for the client to get the data items: 

 The client may get the data items S1, S2 and 

S3 separately. The query incoherency 
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bounds can be divided among data items in 

various ways while satisfying Equation 3. In 

this paper, we show that getting data items 

independently is a costly option. This 

strategy ignores facts that the client is 

interested only in the aggregated value of the 

data items and various aggregators can 

disseminate more than one data item. 

 If a single DA can disseminate all three data 

items required to answer the client query, 

the DA can construct a composite data item 

corresponding to the client query (Sq=50 S1 

+ 200 S2 + 150 S3 ) and disseminate the 

result to the client so that the query 

incoherency bound is not violated. It is 

obvious that if we get the query result from a 

single DA, the number of refreshes will be 

minimum (as in this case data item updates 

may cancel out each other, thereby keeping 

the query result within the incoherency 

bound). As different data aggregators 

disseminate different subsets of data items, 

no data aggregator may have all the data 

items required to execute the client query 

which is indeed the case in Example1. 

Further, even if an aggregator can 

disseminate all the data items, it may not be 

able to satisfy the query coherency 

requirements. In such cases the query has to 

be executed with data from multiple 

aggregators. 

 Another option is to divide the query into a 

number of sub-queries and get their values 

from individual DAs. In that case, the client 

query result is obtained by combining the 

results of more than one sub-query. For the 

DAs given in Example1, the query Q1 can 

be divided in two alternative ways: 

plan1: D1 {50 S1 + 150 S3}; D2 {S2} 

plan2: D1 {S3}; D2 {50 S1, + 200 S2} 

i.e., in plan1 result of sub-query 50 S1 + 150 

S3 is disseminated by D1 and that of S2 (or 

200 S2) by D2. Combining them at the client 

gives the query result. 

 Selecting the optimal plan among various 

options is not-trivial. As a thumb-rule, we 

should be selecting the plan with lesser 

number of sub-queries. But that is not 

guaranteed to be the plan with the least 

number of messages. Further, we should 

select the sub-queries such that updates to 

various data items appearing in a sub-query 

have more chances of canceling each other 

as that will reduce the need for refresh to the 

client (Equation 2). In the above example, if 

updates to S1 and S3 are such that when S1 

increases, S3 decreases, and vice-versa, then 

selecting plan1 may be beneficial. We give 

an algorithm to select the query plan based 

on these observations. 

 While solving the above problem of 

selecting the optimal plan we ensure that 

each data item for a client query is 

disseminated by one and only one data 

aggregator. Although a query can be divided 

in such a way that a single data item is 

served by multiple DAs (e.g., 50 S1 + 200 

S2 + 150 S3 is divided into two sub-queries 

50 S1 + 130 S2 and 70 S2 + 150 S3); but in 

doing so the same data item needs to be 
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processed at multiple aggregators, increasing 

the unnecessary processing load. By 

dividing the client query into disjoint sub-

queries we ensure that a data item update is 

processed only once for each query (For 

example, in case of paid data subscriptions it 

is not prudent to get the same data item from 

the multiple sources). 

 The query incoherency bound needs to be 

divided among sub-query incoherency bounds 

such that, besides satisfying the client coherency 

requirements, the chosen DA (where the sub-

query is to be executed) is capable of satisfying 

the allocated sub-query incoherency bound. For 

example, in plan1 allocated incoherency bound 

to the sub-query 50S1 + 150S3 should be greater 

than 55 (=50*0.5+150*0.2) as that is the tightest 

incoherency bound which the aggregator D1 can 

satisfy. We prove that the number of refreshes 

depends on the division of the query incoherency 

bounds among sub-query incoherency bounds.  

Thus, what we need is a method of (a) 

optimally dividing client query into sub-queries 

and (b) assigning incoherency bounds to them; 

such that (c) selected sub-queries can be 

executed at chosen DAs and (d) total query 

execution cost, in terms of number of refreshes, 

is minimized. We prove that the problem of 

choosing sub-queries while minimizing query 

execution cost is an NP hard problem. We 

give efficient approximation algorithms to 

choose the set of sub-queries and their 

corresponding incoherency bounds for a given 

client query.  For solving the above problem of 

optimally dividing the client query into sub-

queries, we first need a method to estimate query 

execution cost for various alternative options. A 

method for estimating the query execution 

cost is another important contribution of this 

paper. As we divide the client query into sub-

queries such that each sub-query gets executed at 

different aggregator nodes, the query execution 

cost (i.e., number of refreshes) is the sum of the 

execution costs of its constituent sub-queries. We 

model the sub-query execution cost as a function 

of following parameters:  

(a) Dissemination costs of the individual 

data items involved. The data dissemination cost 

is dependent on data dynamics and incoherency 

bound associated with the data. We model the 

data dynamics using a data synopsis model, and 

the effect of the incoherency bound using an 

incoherency bound model. These two models are 

combined to get the estimate of the data 

dissemination cost.  

(b) A correlation measure of data dynamics, 

quantifying the chance that the updates of two 

data items will cancel each other out such that a 

sub query of their sum will incur less refreshes 

than disseminating the individual data changes. 

We use cosine similarity between data items for 

this purpose. This parameter is widely used in 

information retrieval domain [6]. Through 

extensive simulations we show that: 

 Our method of dividing query into sub-

queries and executing them at individual 

DAs requires less than one third of the 

number of refreshes required in the existing 

schemes. 
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 For efficient execution, more dynamic data 

item should be part of sub-query involving 

larger number of data items. 

Our method of executing queries over 

dynamic data dissemination network is practical 

since it can be implemented using a mechanism 

similar to URL-rewriting  in CDNs. Just like in a 

CDN, the client sends its query to the central site. For 

getting appropriate aggregators (edge nodes) to 

answer the client query (web page), the central site 

has to first determine which data aggregators have the 

data items required for the client query. If the client 

query can not be answered by a single data 

aggregator, the query is divided into sub-queries 

(fragments) and each sub-query is assigned to a 

single data aggregator. In case of a CDN, web page’s 

division into fragments is a page design issue, 

whereas, for continuous aggregation queries, this 

issue has to be handled on per-query basis by 

considering data dissemination capabilities of data 

aggregators as represented in Example 1. 

 

1.2 Problem Statement and Contributions 

 Value of a continuous weighted additive 

aggregation query, at time t, can be calculated as: 

 

Vq(t) = )           (1) 

 

Vq is the value of a client query q involving 

nq data items with the weight of the i
th

 data item 

being wqi, 1 ≤ i ≤ nq. Such a query encompasses SQL 

aggregation operators SUM and AVG besides general 

weighed aggregation queries such as portfolio 

queries, involving aggregation of stock prices, 

weighted with number of shares of stocks in the 

portfolio. 

 Suppose the result for the query given by 

Equation (1) needs to be continuously provided to a 

user at the query incoherency bound Cq. Then, the 

dissemination network has to ensure that: 

 

≤Cq                   (2)                  

 

Whenever data values at sources change 

such that query incoherency bound is violated, the 

update value should be refreshed to the client. If the 

network of aggregators can ensure that the ith data 

item has incoherency bound cq is satisfied: 

 

                                           (3) 

                                                                                         

The client specified query incoherency 

bound needs to be translated into incoherency bound 

for individual data items or sub-queries such that 

Equation (3) is satisfied. It should be noted that 

Equation (3) is a sufficient condition for satisfying 

the query incoherency bound but not necessary. This 

way of translating the query incoherency bound into 

sub-query incoherency bounds is required if data is 

transferred between various nodes using only push 

based mechanism. 

  We need a method for (a) optimally 

dividing client query into sub-query and (b) assigning 

incoherency bound to them such that (c) the derived 

sub-queries can be executed at chosen Das and (d) 

total query execution cost, in terms of number of 

refreshes to the client, is minimized. 
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2. QUERY COST MODEL 

Before developing the query cost model we 

first summarize the model to estimate the number of 

refreshes required to disseminate a data item at 

certain incoherency bound. For simulation 

experiments we use data items from sensor network 

and stock data domains as explained in our previous 

work [7]. Stock traces of 45 stocks were obtained by 

periodically polling http://finance.yahoo.com. Sensor 

network data used were temperature and wind sensor 

data from Georges Bank Cruises Albatross Shipboard 

[8]. Due to paucity of space we present results using 

stock data only but similar results were obtained for 

sensor data as well [9]. For detailed analysis and 

simulation results, readers can refer to the extended 

version of the paper [10]. 

 

2.1 Data Dissemination Cost 

Cost of disseminating a data item at a certain 

given incoherency bound C can be estimated by 

combining two models: 

 Incoherency bound model is used for 

estimating dependency of data dissemination 

cost over the desired incoherency bound. As 

per this model, we have shown in [10] that 

the number of data refreshes is inversely 

proportional to the square of the incoherency 

bound (1/C
2
). Similar result was earlier 

reported in [5] where the data dynamics was 

modeled as a random-walk process.  

                                            

                       (4)    

                                                                                                                             

 Data Synopsis Model is used for estimating 

the effect of data dynamics on number of 

data refreshes. We define a data dynamics 

measure called, sumdiff, to obtain a synopsis 

of the data for predicting the dissemination 

cost. The number of update messages for a 

data item is likely to be higher if the data 

item changes more in a given time window. 

Thus we hypothesize that cost of data 

dissemination for a data item will be 

proportional to sumdiff, defined as:  

 

                                       (5) 

 

where si and si-1 are the sampled values of the data 

item at i
th

 and (i-1 )
th

 time instances (consecutive 

ticks). In [10] we corroborate the above hypothesis 

using simulation over a large number of data items.  

Sumdiff value for a data item can be calculated at the 

data source by taking running average of difference 

between data values at the consecutive ticks. A data 

aggregator can also estimate the sumdiff value by 

interpolating the disseminated values. 

Thus, the estimated dissemination cost for 

data item S, disseminated with an incoherency bound 

C, is proportional to Rs/C
2
. Next we use this result for 

developing the query cost model. 

 

2.2 Query Dissemination Cost 

Consider a case where a query consists of 

two data items P and Q with weights wp and w q 

respectively; and we want to estimate its 

dissemination cost. If data items are disseminated 

separately, the query sumdiff will be: 
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                                                                              (6) 

Instead, if the aggregator uses the 

information that client is interested in a query over P 

and Q (rather than their individual values), it makes a 

composite data item wpp+wqq and disseminates that 

data item then the query sumdiff will be: 

     (7) 

                                                                       

Rquery is clearly less than or equal compared 

to R data. Thus we need to estimate the sumdiff of an 

aggregation query (i.e., Rquery) given the sumdiff 

values of individual data items (i.e., Rp and Rq). Only 

data aggregators are in position to calculate R query as 

different data items may be from different sources. 

We develop the query dissemination model in two 

stages. 

 

2.2.1 Quantifying correlation between 

dynamics of data 

From Equations (6) and (7) we can see that 

if two data items are correlated such that if value of 

one data item increases, that of the other data item 

also increases, then Rquery will be closer to Rdata 

whereas if the data items are inversely correlated 

then Rquery will be less compared to Rdata. Thus, 

intuitively, we can represent the relationship between 

Rquery and sumdiff values of the individual data items 

using a correlation measure associated with the pair 

of data items. Specifically, if is the correlation 

measure then Rquery can be written as: 

 

           (8)                                                                          

 

The correlation measure is defined such that 

–1≤ , so, Rquery will always be less than 

|wpRp+wqRq| (as explained earlier) and always be 

more than |wpRp–wqRq|. The correlation measure  

can be interpreted as cosine similarity  between two 

streams represented by data items P and Q. Cosine 

similarity is a widely used measure in information 

retrieval domain where documents are represented 

using a vector-space model and document similarity 

is measured using cosine of angle between two 

document representations. For data streams P and Q, 

can be 

calculated as: 

 

                                    (9)                                                                                                           

 

2.2.2 Query normalization 

Suppose we want to compare the cost of two 

queries: a SUM query involving two data items and 

an AVG query involving the same data items. Let the 

query incoherency bound for the SUM and the AVG 

queries be C1=2C and C2=C, respectively. From 

Equation (8), sumdiff of the SUM query will be 

double that of the AVG query (as the weight of each 

data item in the SUM query is double of that in the 

AVG query). Hence, query evaluation cost (as per 

Ri/Ci
2
) of the SUM query will be half that of the 

AVG query (as SUM query incoherency bound is 

double). But, intuitively, disseminating the SUM of 

two data items, at double the incoherency bound 

should require the same number of messages as their 

AVG. Thus, there is a need to normalize query costs. 

From a query execution cost point of view, a query 
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with weights wi and incoherency bound C is same as 

query with weights awi and incoherency bound a.C. 

So, while normalizing we need to ensure that both, 

query weights and incoherency bounds, are 

multiplied by the same factor. Normalized query 

sumdiff is given by: 

 

                       (10)                                                                          

 

i.e., the value of the normalizing factor should be 

1/  . The value of the 

incoherency bound has to be adjusted by the same 

factor. Normalization ensures that queries with 

arbitrary values of weights can be compared for 

execution cost estimates. From Equations (9 and 10) 

the value of query sumdiff can be estimated at a data 

aggregator node if it has all the required data items 

disseminated to it. An aggregator can use interpolated 

values of data items to estimate  as it is not (always) 

likely to have all the data updates. In the extended 

version of the paper [10] we present an efficient 

method  to calculate  which can also be used when 

the corresponding data items are not being 

disseminated by the same data aggregator. Equation 

(10) can be extended to get query sumdiff for any 

general weighted aggregation query given by 

Equation (1) as: 

 

                  (11) 

                                                                                  

3. EXCEUCTING QUERIES USING 

SUBQUERIES 

For executing an incoherency bounded 

continuous query, a query plan is required which 

includes the set of sub-queries, their individual 

incoherency bounds and data aggregators which can 

execute these sub-queries. We need to find the 

optimal query execution plan which satisfies client 

coherency requirement with the least number of 

refreshes. As explained in Section 1, what we need is 

a mechanism to: 

Task 1: Divide the aggregation query into sub-

queries; and 

Task 2: Allocate the query incoherency bound among 

them, while satisfying the following conditions. 

condition 1. Query incoherency bound is satisfied. 

condition 2. The chosen DA should be able to 

provide all the data items appearing in the sub-query 

assigned to it. 

condition 3. Data incoherency bounds at the chosen 

DA should be such that the sub-query incoherency 

bound can be satisfied at the chosen DA. 

Objective : Number of refreshes should be 

minimized. 

Let the client query be divided into N sub-

queries {qk: 1≤k≤N}; with Rk being sumdiff of k
th

 

sub-query and Ck being incoherency bound assigned 

to it. As given is Section 3, the dissemination cost of 

a sub-query is estimated to be proportional to Rk/Ck 
2
. 

Thus query cost estimate is given by: 

 

                                           (1) 
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While allocating sub-query incoherency bounds we 

need to ensure that the query coherency requirement 

C is satisfied (condition1); i.e.,                   

                                   

                                                        (13) 

                                                                                      

For satisfying condition2, sub-queries should be such 

that all its data items can be disseminated by the 

chosen DA. Let Xk be the tightest incoherency bound 

(defined in Section 2) the chosen DA can satisfy for 

qk. For the condition3, we have to ensure that Ck ≤ Xk 

for each sub-query qk and its assigned data 

aggregator. Z needs to be minimized for minimizing 

the number of refreshes as per the objective. Before 

attempting the hard problem of optimizing Z, let us 

first consider a simpler problem where values of Ck 

are given. In this simpler problem we divide the 

client query into sub-queries to minimize the 

estimated execution cost (Z) without considering the 

optimal division of the query incoherency bound into 

sub-query incoherency bounds. Besides working as a 

step towards a solution for the whole problem this 

case can also be used where allocation of 

incoherency bounds to sub-queries is done 

independent of the data dynamics. For example, it 

may be pre-decided that incoherency bounds for all 

data items will be the same. Thus, for a given query 

and its incoherency bounds, the sub-query 

incoherency bounds can be obtained. Next we prove 

that this simpler version of the problem is NP-hard 

CONCLUSION 

This paper presents a cost-based approach to 

minimize the number of refreshes required to execute 

an incoherency bounded continuous query. We 

assume the existence of network of data aggregator, 

where each DA is capable of disseminating a set of 

data items at their pre-specified incoherency bounds.  

For optimal query execution we divide the query into 

sub-queries and evaluate each sub-query at a 

judiciously chosen data aggregator. We developed an 

important measure for data dynamics in the form of 

sumdiff. Performance evaluation of these sub-query 

execution and using the cost model for other 

applications and developing for more complex 

queries is our future work. 
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