
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

1

Continuous Aggregation Queries With Minimized

Number Of Refreshes Over A Network Of Data

Aggregators

1
K.Gowtham Nagu,

2
V.Kathiresan- Student

3
A.Gomathi – Head of the Department

Department of Computer Science and Engineering

Narasu’s Sarathy Institute of Technology, Salem.

ABSTRACT

Continuous queries are used to monitor changes to time

varying data and to provide results useful for online

decision making. Typically a user desires to obtain the

value of some aggregation function over distributed data

items, for example, to know (a) the average of temperatures

sensed by a set of sensors (b) the value of index of mid-cap

stocks. In these queries a client specifies a coherency

requirement as part of the query. In this paper we present a

low-cost, scalable technique to answer continuous

aggregation queries using a content distribution network of

dynamic data items. In such a network of data aggregators,

each data aggregator serves a set of data items at specific

coherencies. Our technique involves decomposing a client

query into sub-queries and executing sub-queries on

judiciously chosen data aggregators with their individual

sub-query incoherency bounds. We provide a technique of

getting the optimal query plan (i.e., set of sub-queries and

their chosen data aggregators) which satisfies client query’s

coherency requirement with least cost, measured in terms

of the number of refresh messages sent from aggregators to

the client. For estimating query execution cost, we build a

continuous query cost model which can be used to estimate

the number of messages required to satisfy the client

specified incoherency bound.

Index terms – Continuous queries, distributed query

processing, data dissemination, coherency.

1. INTRODUCTION

Many data intensive applications delivered over the

Web suffer from performance and scalability issues.

Content distribution networks (CDNs) solved the

problem for static content using caches at the edge

nodes of the networks. CDNs continue to evolve to

serve more and more dynamic applications [1, 2]. A

dynamically generated web page is usually assembled

using a number of static or dynamically generated

fragments. The static fragments are served from the

local caches whereas dynamic fragments are created

either by using the cached data or by fetching the data

items from the origin data sources. One important

question for satisfying client requests through a

network of nodes is how to select the best node(s) to

satisfy the request. For static pages content requested,

proximity to the client and load on the nodes are the

parameters generally used to select the appropriate

node [3]. In dynamic CDNs, while selecting the

node(s) to satisfy the client request, the central site

(top-level CDN node) has to ensure that page/data

served meets client’s coherency requirements also.

Techniques to efficiently serve fast changing data

items with guaranteed incoherency bounds have been

proposed in the literature [4,5]. Such dynamic data

dissemination networks can be used to disseminate

data such as stock quotes, temperature data from

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

2

sensors, traffic information, and network monitoring

data. In this paper we propose a method to efficiently

answer aggregation queries involving such data

items.

Data Incoherency: Data accuracy can be

specified in terms of incoherency of a data item,

defined as the absolute difference in value of the data

item at the data source and the value known to a

client of the data. Let vi(t) denote the value of the i
th

data item at the data source at time t; and let the value

the data item known to the client be ui(t). Then the

data incoherency at the client is given by |vi(t)-ui(t)|.

For a data item which needs to be refreshed at an

incoherency bound C a data refresh message is sent

to the client as soon as data incoherency exceeds C,

i.e., |vi(t)-ui(t)| C.

Network of data aggregators: Data refresh

from data sources to clients can be done using push

or pull based mechanism data sources and messages

to the client only when the client makes a request.

We assume the push based mechanism for data

transfer between data sources and clients. For

Scalable handling of push based data dissemination,

network of data aggregators are proposed in the

literature. In such network of data aggregators, data

refreshes occur from data sources to the clients

through one or more data aggregators.

In this paper we assume that each data

aggregator maintains its configured incoherency

bounds for various data items. From a data

dissemination capability point of view, each data

aggregator (DA) is characterized by a set of (di,ci)

pairs, where di is a data item which DA can

disseminate at a incoherency bound of a data item at

a data aggregator can be maintained using any of

following methods: (a) The data source refreshes the

data value of the DA whenever DA’s incoherency

bound is about to get violated. This method has

scalability problems. (b) Data aggregator(s) with

tighter incoherency bound in a scalable manner.

Example 1: In a network of data aggregators

managing data items s1-s4, various aggregators can be

characterized as-

 a1: {(s1,0.5), (s3,0.2)}

 a2:{(s1,1.0), (s2,0.1), (s4, 0.2)}

Aggregator a1 can serve values of s1 with an

incoherency bound greater than or equal to 0.5

whereas a2 can disseminate the same data item at a

looser incoherency bound of 1.0 or more. In such a

network of aggregators of multiple data items all the

nodes can be considered as peers since a node ai can

help another node ak to maintain incoherency bound

of the data item s1 (incoherency bound of d1 at ai is

tighter than that at ak) but the node ai gets values of

another data item s2 from ak.

1.1 Summary of Approach and Contributions

Consider a client query Q1=50 S1 + 200 S2

+ 150 S3 with a required incoherency bound of 80 (in

a stock portfolio S1, S2, S3 can be different stocks

and incoherency bound can be $80).We want to

execute this query over data aggregators given in

Example1 minimizing number of refreshes. There are

various options for the client to get the data items:

 The client may get the data items S1, S2 and

S3 separately. The query incoherency

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

3

bounds can be divided among data items in

various ways while satisfying Equation 3. In

this paper, we show that getting data items

independently is a costly option. This

strategy ignores facts that the client is

interested only in the aggregated value of the

data items and various aggregators can

disseminate more than one data item.

 If a single DA can disseminate all three data

items required to answer the client query,

the DA can construct a composite data item

corresponding to the client query (Sq=50 S1

+ 200 S2 + 150 S3) and disseminate the

result to the client so that the query

incoherency bound is not violated. It is

obvious that if we get the query result from a

single DA, the number of refreshes will be

minimum (as in this case data item updates

may cancel out each other, thereby keeping

the query result within the incoherency

bound). As different data aggregators

disseminate different subsets of data items,

no data aggregator may have all the data

items required to execute the client query

which is indeed the case in Example1.

Further, even if an aggregator can

disseminate all the data items, it may not be

able to satisfy the query coherency

requirements. In such cases the query has to

be executed with data from multiple

aggregators.

 Another option is to divide the query into a

number of sub-queries and get their values

from individual DAs. In that case, the client

query result is obtained by combining the

results of more than one sub-query. For the

DAs given in Example1, the query Q1 can

be divided in two alternative ways:

plan1: D1 {50 S1 + 150 S3}; D2 {S2}

plan2: D1 {S3}; D2 {50 S1, + 200 S2}

i.e., in plan1 result of sub-query 50 S1 + 150

S3 is disseminated by D1 and that of S2 (or

200 S2) by D2. Combining them at the client

gives the query result.

 Selecting the optimal plan among various

options is not-trivial. As a thumb-rule, we

should be selecting the plan with lesser

number of sub-queries. But that is not

guaranteed to be the plan with the least

number of messages. Further, we should

select the sub-queries such that updates to

various data items appearing in a sub-query

have more chances of canceling each other

as that will reduce the need for refresh to the

client (Equation 2). In the above example, if

updates to S1 and S3 are such that when S1

increases, S3 decreases, and vice-versa, then

selecting plan1 may be beneficial. We give

an algorithm to select the query plan based

on these observations.

 While solving the above problem of

selecting the optimal plan we ensure that

each data item for a client query is

disseminated by one and only one data

aggregator. Although a query can be divided

in such a way that a single data item is

served by multiple DAs (e.g., 50 S1 + 200

S2 + 150 S3 is divided into two sub-queries

50 S1 + 130 S2 and 70 S2 + 150 S3); but in

doing so the same data item needs to be

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

4

processed at multiple aggregators, increasing

the unnecessary processing load. By

dividing the client query into disjoint sub-

queries we ensure that a data item update is

processed only once for each query (For

example, in case of paid data subscriptions it

is not prudent to get the same data item from

the multiple sources).

 The query incoherency bound needs to be

divided among sub-query incoherency bounds

such that, besides satisfying the client coherency

requirements, the chosen DA (where the sub-

query is to be executed) is capable of satisfying

the allocated sub-query incoherency bound. For

example, in plan1 allocated incoherency bound

to the sub-query 50S1 + 150S3 should be greater

than 55 (=50*0.5+150*0.2) as that is the tightest

incoherency bound which the aggregator D1 can

satisfy. We prove that the number of refreshes

depends on the division of the query incoherency

bounds among sub-query incoherency bounds.

Thus, what we need is a method of (a)

optimally dividing client query into sub-queries

and (b) assigning incoherency bounds to them;

such that (c) selected sub-queries can be

executed at chosen DAs and (d) total query

execution cost, in terms of number of refreshes,

is minimized. We prove that the problem of

choosing sub-queries while minimizing query

execution cost is an NP hard problem. We

give efficient approximation algorithms to

choose the set of sub-queries and their

corresponding incoherency bounds for a given

client query. For solving the above problem of

optimally dividing the client query into sub-

queries, we first need a method to estimate query

execution cost for various alternative options. A

method for estimating the query execution

cost is another important contribution of this

paper. As we divide the client query into sub-

queries such that each sub-query gets executed at

different aggregator nodes, the query execution

cost (i.e., number of refreshes) is the sum of the

execution costs of its constituent sub-queries. We

model the sub-query execution cost as a function

of following parameters:

(a) Dissemination costs of the individual

data items involved. The data dissemination cost

is dependent on data dynamics and incoherency

bound associated with the data. We model the

data dynamics using a data synopsis model, and

the effect of the incoherency bound using an

incoherency bound model. These two models are

combined to get the estimate of the data

dissemination cost.

(b) A correlation measure of data dynamics,

quantifying the chance that the updates of two

data items will cancel each other out such that a

sub query of their sum will incur less refreshes

than disseminating the individual data changes.

We use cosine similarity between data items for

this purpose. This parameter is widely used in

information retrieval domain [6]. Through

extensive simulations we show that:

 Our method of dividing query into sub-

queries and executing them at individual

DAs requires less than one third of the

number of refreshes required in the existing

schemes.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

5

 For efficient execution, more dynamic data

item should be part of sub-query involving

larger number of data items.

Our method of executing queries over

dynamic data dissemination network is practical

since it can be implemented using a mechanism

similar to URL-rewriting in CDNs. Just like in a

CDN, the client sends its query to the central site. For

getting appropriate aggregators (edge nodes) to

answer the client query (web page), the central site

has to first determine which data aggregators have the

data items required for the client query. If the client

query can not be answered by a single data

aggregator, the query is divided into sub-queries

(fragments) and each sub-query is assigned to a

single data aggregator. In case of a CDN, web page’s

division into fragments is a page design issue,

whereas, for continuous aggregation queries, this

issue has to be handled on per-query basis by

considering data dissemination capabilities of data

aggregators as represented in Example 1.

1.2 Problem Statement and Contributions

 Value of a continuous weighted additive

aggregation query, at time t, can be calculated as:

Vq(t) =) (1)

Vq is the value of a client query q involving

nq data items with the weight of the i
th

 data item

being wqi, 1 ≤ i ≤ nq. Such a query encompasses SQL

aggregation operators SUM and AVG besides general

weighed aggregation queries such as portfolio

queries, involving aggregation of stock prices,

weighted with number of shares of stocks in the

portfolio.

 Suppose the result for the query given by

Equation (1) needs to be continuously provided to a

user at the query incoherency bound Cq. Then, the

dissemination network has to ensure that:

≤Cq (2)

Whenever data values at sources change

such that query incoherency bound is violated, the

update value should be refreshed to the client. If the

network of aggregators can ensure that the ith data

item has incoherency bound cq is satisfied:

 (3)

The client specified query incoherency

bound needs to be translated into incoherency bound

for individual data items or sub-queries such that

Equation (3) is satisfied. It should be noted that

Equation (3) is a sufficient condition for satisfying

the query incoherency bound but not necessary. This

way of translating the query incoherency bound into

sub-query incoherency bounds is required if data is

transferred between various nodes using only push

based mechanism.

 We need a method for (a) optimally

dividing client query into sub-query and (b) assigning

incoherency bound to them such that (c) the derived

sub-queries can be executed at chosen Das and (d)

total query execution cost, in terms of number of

refreshes to the client, is minimized.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

6

2. QUERY COST MODEL

Before developing the query cost model we

first summarize the model to estimate the number of

refreshes required to disseminate a data item at

certain incoherency bound. For simulation

experiments we use data items from sensor network

and stock data domains as explained in our previous

work [7]. Stock traces of 45 stocks were obtained by

periodically polling http://finance.yahoo.com. Sensor

network data used were temperature and wind sensor

data from Georges Bank Cruises Albatross Shipboard

[8]. Due to paucity of space we present results using

stock data only but similar results were obtained for

sensor data as well [9]. For detailed analysis and

simulation results, readers can refer to the extended

version of the paper [10].

2.1 Data Dissemination Cost

Cost of disseminating a data item at a certain

given incoherency bound C can be estimated by

combining two models:

 Incoherency bound model is used for

estimating dependency of data dissemination

cost over the desired incoherency bound. As

per this model, we have shown in [10] that

the number of data refreshes is inversely

proportional to the square of the incoherency

bound (1/C
2
). Similar result was earlier

reported in [5] where the data dynamics was

modeled as a random-walk process.

 (4)

 Data Synopsis Model is used for estimating

the effect of data dynamics on number of

data refreshes. We define a data dynamics

measure called, sumdiff, to obtain a synopsis

of the data for predicting the dissemination

cost. The number of update messages for a

data item is likely to be higher if the data

item changes more in a given time window.

Thus we hypothesize that cost of data

dissemination for a data item will be

proportional to sumdiff, defined as:

 (5)

where si and si-1 are the sampled values of the data

item at i
th

 and (i-1)
th

 time instances (consecutive

ticks). In [10] we corroborate the above hypothesis

using simulation over a large number of data items.

Sumdiff value for a data item can be calculated at the

data source by taking running average of difference

between data values at the consecutive ticks. A data

aggregator can also estimate the sumdiff value by

interpolating the disseminated values.

Thus, the estimated dissemination cost for

data item S, disseminated with an incoherency bound

C, is proportional to Rs/C
2
. Next we use this result for

developing the query cost model.

2.2 Query Dissemination Cost

Consider a case where a query consists of

two data items P and Q with weights wp and w q

respectively; and we want to estimate its

dissemination cost. If data items are disseminated

separately, the query sumdiff will be:

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

7

 (6)

Instead, if the aggregator uses the

information that client is interested in a query over P

and Q (rather than their individual values), it makes a

composite data item wpp+wqq and disseminates that

data item then the query sumdiff will be:

 (7)

Rquery is clearly less than or equal compared

to R data. Thus we need to estimate the sumdiff of an

aggregation query (i.e., Rquery) given the sumdiff

values of individual data items (i.e., Rp and Rq). Only

data aggregators are in position to calculate R query as

different data items may be from different sources.

We develop the query dissemination model in two

stages.

2.2.1 Quantifying correlation between

dynamics of data

From Equations (6) and (7) we can see that

if two data items are correlated such that if value of

one data item increases, that of the other data item

also increases, then Rquery will be closer to Rdata

whereas if the data items are inversely correlated

then Rquery will be less compared to Rdata. Thus,

intuitively, we can represent the relationship between

Rquery and sumdiff values of the individual data items

using a correlation measure associated with the pair

of data items. Specifically, if is the correlation

measure then Rquery can be written as:

 (8)

The correlation measure is defined such that

–1≤ , so, Rquery will always be less than

|wpRp+wqRq| (as explained earlier) and always be

more than |wpRp–wqRq|. The correlation measure

can be interpreted as cosine similarity between two

streams represented by data items P and Q. Cosine

similarity is a widely used measure in information

retrieval domain where documents are represented

using a vector-space model and document similarity

is measured using cosine of angle between two

document representations. For data streams P and Q,

can be

calculated as:

 (9)

2.2.2 Query normalization

Suppose we want to compare the cost of two

queries: a SUM query involving two data items and

an AVG query involving the same data items. Let the

query incoherency bound for the SUM and the AVG

queries be C1=2C and C2=C, respectively. From

Equation (8), sumdiff of the SUM query will be

double that of the AVG query (as the weight of each

data item in the SUM query is double of that in the

AVG query). Hence, query evaluation cost (as per

Ri/Ci
2
) of the SUM query will be half that of the

AVG query (as SUM query incoherency bound is

double). But, intuitively, disseminating the SUM of

two data items, at double the incoherency bound

should require the same number of messages as their

AVG. Thus, there is a need to normalize query costs.

From a query execution cost point of view, a query

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

8

with weights wi and incoherency bound C is same as

query with weights awi and incoherency bound a.C.

So, while normalizing we need to ensure that both,

query weights and incoherency bounds, are

multiplied by the same factor. Normalized query

sumdiff is given by:

 (10)

i.e., the value of the normalizing factor should be

1/ . The value of the

incoherency bound has to be adjusted by the same

factor. Normalization ensures that queries with

arbitrary values of weights can be compared for

execution cost estimates. From Equations (9 and 10)

the value of query sumdiff can be estimated at a data

aggregator node if it has all the required data items

disseminated to it. An aggregator can use interpolated

values of data items to estimate as it is not (always)

likely to have all the data updates. In the extended

version of the paper [10] we present an efficient

method to calculate which can also be used when

the corresponding data items are not being

disseminated by the same data aggregator. Equation

(10) can be extended to get query sumdiff for any

general weighted aggregation query given by

Equation (1) as:

 (11)

3. EXCEUCTING QUERIES USING

SUBQUERIES

For executing an incoherency bounded

continuous query, a query plan is required which

includes the set of sub-queries, their individual

incoherency bounds and data aggregators which can

execute these sub-queries. We need to find the

optimal query execution plan which satisfies client

coherency requirement with the least number of

refreshes. As explained in Section 1, what we need is

a mechanism to:

Task 1: Divide the aggregation query into sub-

queries; and

Task 2: Allocate the query incoherency bound among

them, while satisfying the following conditions.

condition 1. Query incoherency bound is satisfied.

condition 2. The chosen DA should be able to

provide all the data items appearing in the sub-query

assigned to it.

condition 3. Data incoherency bounds at the chosen

DA should be such that the sub-query incoherency

bound can be satisfied at the chosen DA.

Objective : Number of refreshes should be

minimized.

Let the client query be divided into N sub-

queries {qk: 1≤k≤N}; with Rk being sumdiff of k
th

sub-query and Ck being incoherency bound assigned

to it. As given is Section 3, the dissemination cost of

a sub-query is estimated to be proportional to Rk/Ck
2
.

Thus query cost estimate is given by:

 (1)

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

9

While allocating sub-query incoherency bounds we

need to ensure that the query coherency requirement

C is satisfied (condition1); i.e.,

 (13)

For satisfying condition2, sub-queries should be such

that all its data items can be disseminated by the

chosen DA. Let Xk be the tightest incoherency bound

(defined in Section 2) the chosen DA can satisfy for

qk. For the condition3, we have to ensure that Ck ≤ Xk

for each sub-query qk and its assigned data

aggregator. Z needs to be minimized for minimizing

the number of refreshes as per the objective. Before

attempting the hard problem of optimizing Z, let us

first consider a simpler problem where values of Ck

are given. In this simpler problem we divide the

client query into sub-queries to minimize the

estimated execution cost (Z) without considering the

optimal division of the query incoherency bound into

sub-query incoherency bounds. Besides working as a

step towards a solution for the whole problem this

case can also be used where allocation of

incoherency bounds to sub-queries is done

independent of the data dynamics. For example, it

may be pre-decided that incoherency bounds for all

data items will be the same. Thus, for a given query

and its incoherency bounds, the sub-query

incoherency bounds can be obtained. Next we prove

that this simpler version of the problem is NP-hard

CONCLUSION

This paper presents a cost-based approach to

minimize the number of refreshes required to execute

an incoherency bounded continuous query. We

assume the existence of network of data aggregator,

where each DA is capable of disseminating a set of

data items at their pre-specified incoherency bounds.

For optimal query execution we divide the query into

sub-queries and evaluate each sub-query at a

judiciously chosen data aggregator. We developed an

important measure for data dynamics in the form of

sumdiff. Performance evaluation of these sub-query

execution and using the cost model for other

applications and developing for more complex

queries is our future work.

REFERENCES

 [1] A. Davis, J. Parikh and W. Weihl. Edge Computing:

Extending Enterprise Applications to the Edge of the

Internet. WWW 2004

[2] D. VanderMeer, A. Datta, K. Dutta, H. Thomas and K.

Ramamritham. Proxy-Based Acceleration of Dynamically

Generated Content on the World Wide Web. ACM

Transactions on Database Systems (TODS) Vol. 29, June

2004.

[3] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman

and B. Weihl. Globally Distributed Content Delivery, IEEE

Internet Computing Sept 2002.

[4] S. Shah, K. Ramamritham, and P. Shenoy. Maintaining

Coherency of Dynamic Data in Cooperating Repositories.\

VLDB 2002.

[5] Dynamai: Caching Technology for Dynmaic Content

Revealed. www.infoworld.com/articles.

[6] Lam, W. and Ho, C.Y. Using a Generalized Instance

Set for Automatic Text Categorization. SIGIR, 1998.

[7] R. Gupta, A. Puri, and K. Ramamritham. Executing

Incoherency Bounded Continuous Queries at Web Data

Aggregators. WWW 2005.

[8] NEFSC Scientific Computer System

http://sole.wh.whoi.edu/~jmanning//cruise/serve1.cgi

[9] Query cost model validation for sensor data.

www.cse.iitb.ac.in/~ravivj/BTP06.pdf.

[10] Optimized Execution of Continuous Queries, APS

2006, www.cse.iitb.ac.in/~grajeev/APS06.PDF

http://www.infoworld.com/articles
http://www.cse.iitb.ac.in/~ravivj/BTP06.pdf

